

Caching For Performance

Using Client-Side Cache Solutions and Server-Side Caching Configurations
to Improve Internet Performance

by

Stephen Pierzchala (stephen@pierzchala.com)

In today’s highly competitive e-commerce marketplace, the performance of a Web site plays a key role in
attracting new and retaining current customers. New technologies are being developed to help speed up the
delivery of content to customers while still allowing companies to get their message across using rich, graphical
content. However, in the rush to find new technologies to improve Internet performance, one low-cost alternative
is often overlooked: client-side content caching.

Web administrators and content providers are often dismissive of this technique when attempting to improve
performance. They are more concerned with ensuring that clients always get the freshest content possible. In
their eyes, by allowing their content to be cached on servers they do not directly control, they have lost some level
of control over the way that a Web page appears.

This bias against caching is, in most cases, unjustified. By understanding how server software can be used to
distinguish unique caching policies for each type of content being delivered, client-side performance gains can be
achieved with no new hardware or software being added to an existing Web-site system.

Caching

When a client requests Web content, the information
is either retrieved directly from the origin server, from
a browser cache on a local hard drive or from a
nearby cache server1. Where and for how long the
data is stored depends on how the data is tagged
when it leaves the Web server. Web content can be
in one of three cache states: non-cacheable, fresh or
stale.

The non-cacheable state indicates a file that should
never be cached by any device that receives it and
that every request for that file must be retrieved from
the origin server. This places an additional load on
both client and server bandwidth, as well as on the
server which responds to these additional requests. In
many cases, such as database queries, news content,
and personalized content marked by unique cookies,
the content provider may explicitly prevent caching to
avoid having stale served to the client.

A fresh file is one that has a clearly defined future
expiration date and/or does not indicate that it is non-
cacheable. A file with a defined lifespan is valid for a
set number of seconds after it is downloaded, or until
the explicitly stated expiry time is reached. At that

1 The proximity that is referred to here is network proximity, not
physical proximity. For example, AOL’s network has some of the
world’s largest cache servers and they are concentrated in Virginia;
however, because of the structure of AOL’s network, these cache
servers are not far from the clients.

point, the file is considered stale and must be re-
validated (preferred as it requires less bandwidth) or
re-loaded from the origin server.2

If a file does not explicitly indicate it is non-cacheable,
but does not indicate an explicit expiry period or time,
the cache server can be configured to assign the file a
default expiry time. When that deadline is reached
and the cache server receives a request for that file,
the server checks with the origin server to see
whether the content has changed. If the file is
unchanged, the counter is reset and the existing
content is served to the client; if the file is changed,
the new content is downloaded, cached according to
its settings and then served to the client.

A stale file is one that is no longer considered valid by
the cache. When a client requests this object, the
cache must re-validate or re-load the file from the
origin server before the data can served to the client.

Caching information is included in the information sent
to and from the server. The state of an item being
considered for caching is determined using one or
more of the HTTP header messages, which we now
describe.
HTTP Caching Header Messages

2 A re-verify is preferred as it consumes less bandwidth than a full
re-load of the object from the origin server. With a re-verification,
the origin server just confirms that the file is still valid and the cache
server can simply reset the timer on the object.

Each of the HTTP headers messages3 described
below4 identifies a particular condition that the proxy
server must adhere to when deciding whether the
content is fresh enough to be served to the requesting
client.

Pragma: no-cache is an HTTP/1.0 client request
header that requests that the content not be served
from cache anywhere en route to the server. This
response has been deprecated in favor of the new
HTTP/1.1 Cache-Control header, but is still used in
many browsers. The continued use of this header is
necessary to ensure backwards-compatibility, as it
cannot be guaranteed that all devices and servers will
understand the HTTP/1.1 server headers.

This header should never be seen in a server
response header. If a server wants to indicate that
content is uncacheable, the server should use one of
the HTTP/1.1 Cache-Control messages described
below.

The Cache-Control family of HTTP/1.1 client and
server messages can be used to clearly define not
only if an item can be cached, but also for how long
and how it should be validated upon expiry. There are
a large number of options for this header field, but five
that are especially relevant to this discussion.5

Cache-Control: private/public
This setting indicates what type of devices can cache
the data. The private setting allows the marked items
to be cached by the requesting client, but not by any
cache servers encountered en-route. The public
setting indicates that any device can cache this
content. By default, public is assumed unless private
is explicitly stated.

Cache-Control: no-cache
This is the HTTP/1.1 equivalent of Pragma: no-cache
when used by Web clients, as it forces an end-to-end
retrieval of the requested files, circumventing a proxy
server on the local network. This is also a valid server
response header requesting that proxy servers not
cache the indicated items when they pass through on
the way to the client.

Cache-Control: no-store
This message is the most strongly enforceable of the
server-side response headers. Servers use this

3 An HTTP header message is a data-control message sent by a
Web client or a Web server to indicate a variety of data
transmission parameters concerning the requests being made.
4 There are actually a substantially larger number of header
messages that can be applied to a client or a server data
transmission to communicate caching information. The most up-to-
date list of the messages can be found in section 13 of RFC 2616,
“Hypertext Transfer Protocol -- HTTP/1.1”.
5 A complete listing of the Cache-Control settings can be found in
RFC 2616, “Hypertext Transfer Protocol -- HTTP/1.1”, section 14.9.

message to state categorically that items must not be
cached. The no-cache header can be ignored under
certain proxy configurations, while the no-store must
be obeyed.

Cache-Control: max-age=x
This setting allows indicated files to be cached either
by the client or the cache server for “x” seconds.

Cache-Control: must-revalidate
This setting informs the cache server that if the item in
cache is stale, it must be re-validated at the origin
server before it can be sent to the client.

A number of the Cache-Control settings can be
combined to form a larger header message with
multiple options. For example, an administrator may
want to define how long the content is valid for, and
then indicate that, at the end of that period, all new
requests must be revalidated with the origin server.
This can be accomplished by creating a multi-field
Cache-Control header message like the one below.

Cache-Control: max-age=3600, must-revalidate

The Expires header sets an absolute or relative
expiry time for the requested file. This is usually in the
future, but some server administrators attempt to
negative cache items by setting an expiry date that is
in the past – an example of this will be shown below.
A better practice is to set explicit Cache-Control
headers to explicitly prevent caching, while setting an
Expires header equal to the server date.

Last-Modified is a server response header that most
commonly indicates the last time the state of the
requested object was updated in the server’s
filesystem. The cache server can use this to confirm
an object has not changed since it was inserted into
the cache, allowing for the re-validation, versus the
complete re-loading, of objects in cache.

If-Modified-Since is a client-side header message
that is sent either by a browser or a cache server and
is set by the Last-Modified value of the object in
cache. When the origin server has not set an explicit
cache expiry value and the cache server has had to
set an expiry time on the object using its own internal
configuration, the Last-Modified value is used to
confirm whether content has changed on the origin
server. If the Last-Modified value on an object held
by the origin server is newer than that held by the
client, the entire file is re-loaded. If these values are
the same, the origin server returns a 304 Not
Modified HTTP message. In this case, the cached
object is then served to the client and the cache-
defined counter for the object is reset.

Cache Trace Examples

The following two examples show how a server can
use header messages to mark content as non-
cacheable, or set very specific caching values.

Server Messages for a Non-Cacheable Object

HTTP/1.0 200 OK
Content-Type: text/html
Content-Length: 19662
Pragma: no-cache
Cache-Control: no-cache
Server: Roxen/2.1.185
Accept-Ranges: bytes
Expires: Wed, 03 Jan 2001 00:18:55 GMT

In this example, the server returns three indications
that the content is non-cacheable. The first two are
the Pragma: no-cache and Cache-Control: no-
cache statements. Only the Cache-Control header is
valid, and should be enough to prevent most caches
from storing this file. The Web administrator in this
example has chosen to erroneously include the
Pragma header, most likely in the belief that any
device, regardless of the version of HTTP used, will
clearly understand that this object is non-cacheable.

However, in order to attempt to guarantee that this
item is never stored in or served from cache, the
Expires statement is set to a date and time that is in
the past.6 Again, this is unnecessary, and setting the
Expires header to equal the date and time on the
server at the time of the response7 is a more than
adequate guarantee that the object will not be cached.

Specific Caching Information in Server Messages

HTTP/1.1 200 OK
Date: Tue, 13 Feb 2001 14:50:31 GMT
Server: Apache/1.3.12
Cache-Control: max-age=43200
Expires: Wed, 14 Feb 2001 02:50:31 GMT
Last-Modified: Sun, 03 Dec 2000 23:52:56 GMT
ETag: "1cbf3-dfd-3a2adcd8"
Accept-Ranges: bytes
Content-Length: 3581
Connection: close
Content-Type: text/html

In the example above, the server returns a header
message Cache-Control: max-age=43200. This
immediately informs the cache that the object can be
stored in cache for up to 12 hours. This 12-hour time
limit is further guaranteed by the Expires header,
which is set to a date value that is exactly 12 hours
ahead of the value set in the Date header message.8

6 The initial file request that generated this header was sent on
February 12, 2001.
7 The next example demonstrates the Date header
8 The Date header message indicates the date and time on the
origin server when it responded to the request.

These two examples present two variations of Web
server responses containing information that makes
the requested content either completely non-
cacheable or cacheable only for a very specific period
of time.

How does caching work?

Devices on the Internet cache content, then serve this
stored content when the original client or another
client that uses that same cache requests the same
file. This rather simplistic description covers a number
of different cache scenarios, but two will be the focus
of this paper – browser caching and caching servers.9

For the remainder of this paper, the caching
environment that will be discussed is one involving a
network with a number of clients using a single cache
server, the general Internet, and a server network with
a series of Web servers on it.

Browser Caching

Browser caching is what most people are familiar with,
as all Web browsers perform this behavior by default.
With this type of caching, the Web browser stores a
copy of the requested files in a cache on the client
machine in order to help speed up page downloads. A
performance increase is achieved by serving stored
files from this directory on the local hard drive instead
of retrieving these same files from the Web server,
which resides across a much slower Internet
connection.

To ensure that old content is not being served to the
client, the browser checks its cache first to see if an
item is in cache. If the item is in cache, the browser
then confirms the state of the object with the origin
server to see if the item has been modified at the
source since the browser last downloaded it. If the
object has not been modified, the origin server sends
a 304 Not Modified message, and the item is served
from the local browser cache.

9 A third type of caching, Reverse Caching or HTTPD Accelerators,
are used at the server side to place highly cacheable content into
high-speed machines that use solid-state storage to make retrieval
of these objects very fast. This reduces the load on the Web servers
and allows them to concentrate on the generation of dynamic and
personalized content.

First Request for a file

GET /file.html HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword,
application/x-comet, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)
Host: 24.5.203.101
Connection: Keep-Alive

HTTP/1.1 200 OK
Date: Tue, 13 Feb 2001 20:00:22 GMT
Server: Apache
Cache-Control: max-age=604800
Last-Modified: Wed, 29 Nov 2000 15:28:38 GMT
ETag: "1df-28f1-3a2520a6"
Accept-Ranges: bytes
Content-Length: 10481
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html

In the above example, the file is retrieved from the
server for the first time, and the server sends a 200
OK response and then returns the requested file. The
data shown here is just application trace data. For a
more complete example of the application and
network properties of a Web object retrieval, see the
Appendices.

Second Request for a file

GET /file.html HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Wed, 29 Nov 2000 15:28:38 GMT
If-None-Match: "1df-28f1-3a2520a6"
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)
Host: 24.5.203.101
Connection: Keep-Alive

HTTP/1.1 304 Not Modified
Date: Tue, 13 Feb 2001 20:01:07 GMT
Server: Apache
Connection: Keep-Alive
Keep-Alive: timeout=5, max=100
ETag: "1df-28f1-3a2520a6"
Cache-Control: max-age=604800

The second request for a file sees the client send a
request for the same object 40 seconds later, but with
two additions. The server asks if the file has been
modified since the last time it was requested by the
client (If-Modified-Since). If the origin server cannot
confirm the state of the requested object using the If-
Modified-Since field, the client asks if the object’s
Etag tracking code has changed using the If-None-
Match header message.10 The origin server responds

10 The Etag or entity tag is used to identify specific objects on a
Web server. Each item has unique Etag value, and this value is
changed each time the file is modified. As an example, the Etag for

by verifying that object has not been modified and
confirms this by returning the same Etag value that
was sent by the client. This rapid client-server
exchange allows the browser to quickly determine that
it can serve the file directly from its local cache
directory.

Caching Server

A caching server performs functions similar to those of
a browser cache, only on a much larger scale. Where
a browser cache is responsible for storing Web
objects for a single browser application on a single
computer, a cache server stores Web objects for a
large number of clients or perhaps even an entire
network. With a cache server, all Web requests from a
network are passed through caching server, which
then will serve the requested files to the client. The
cache server can deliver content either directly from
its own cache of objects, or by retrieving objects from
the Internet and then serving them to clients. 11

Cache servers are more efficient than browser
caches, as this network-level caching process makes
the object available to all users of the network once it
has been retrieved. With a browser cache, each user
– and, in fact, each browser application on a specific
computer – must maintain a unique cache of files that
is not shared with other clients or applications.

Also, cache servers use additional information
provided by the Web server in the headers sent along
with each Web request. Browser caches simply re-
validate content with each request, confirming that the
content has not been modified since it was last
requested. Cache servers use the values sent in the
Expires and Cache-Control header messages to set
explicit expiry times for objects they store.

a local Web file was captured. This data was re-captured after the
file was modified – two carriage returns were inserted.

Test 1 – Original File
ETag: "21ccd-10cb-399a1b33"
Test 2 – Modified File
ETag: "21ccd-10cd-3a8c0597"

11 This is where the other name for a cache server comes from, as
the cache server acts as a proxy for the client making the request.
The term proxy server is outdated as the term proxy assumes that
the device will do exactly as the client requests; this is not always
the case due to the security and content control mechanisms which
are a part of all cache servers today. The client isn’t always
guaranteed to receive the complete content they requested. Infact,
many networks do not allow any content into the network that does
not first go through the cache devices on that network.

First Request for a file through a cache server

GET http://24.5.203.101/file.html HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword,
application/x-comet, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)
Host: 24.5.203.101
Proxy-Connection: Keep-Alive

HTTP/1.0 200 OK
Date: Tue, 16 Jan 2001 15:46:42 GMT
Server: Apache
Cache-Control: max-age=604800
Last-Modified: Wed, 29 Nov 2000 15:28:38 GMT
ETag: "1df-28f1-3a2520a6"
Content-Length: 10481
Content-Type: text/html
Connection: Close

The first request from the client through a cache
server shows two very interesting things.12 The first is
that although the client request was sent out as
HTTP/1.1, the server responded using HTTP/1.0. The
browser caching example above demonstrated that
the responding server uses HTTP/1.1. The change in
protocol is the first clue that this data was served by a
cache server.

The second item of interest is that the file that is
initially served by the proxy server has a Date field set
to January 16, 2001. This server is not serving stale
data; this is the default time set by the cache server to
indicate a new object that has been inserted in the
cache.13

Second Request for a file through a cache server –
Second Browser

GET http://24.5.203.101/file.html HTTP/1.1
Host: 24.5.203.101
User-Agent: Mozilla/5.0 (Windows; U; Windows NT
5.0; en-US; 0.7) Gecko/20010109
Accept: */*
Accept-Language: en
Accept-Encoding: gzip,deflate,compress,identity
Keep-Alive: 300
Connection: keep-alive

HTTP/1.0 200 OK
Date: Tue, 16 Jan 2001 15:46:42 GMT
Server: Apache
Cache-Control: max-age=604800
Last-Modified: Wed, 29 Nov 2000 15:28:38 GMT
ETag: "1df-28f1-3a2520a6"
Content-Length: 10481
Content-Type: text/html
Connection: Close

12 The data shown here is just application trace data. For a more
complete example of what the application and network properties of
a Web object retrieval are, please see Appendix A and B.
13 All the data captures used in this example were taken on
February 11-14, 2001.

Third Request for a file through a cache server –
Second Client Machine

GET http://24.5.203.101/file.html HTTP/1.0
Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5;
Windows NT 5.0)
Host: 24.5.203.101
Proxy-Connection: Keep-Alive

HTTP/1.0 200 OK
Date: Tue, 16 Jan 2001 15:46:42 GMT
Server: Apache
Cache-Control: max-age=604800
Last-Modified: Wed, 29 Nov 2000 15:28:38 GMT
ETag: "1df-28f1-3a2520a6"
Content-Length: 10481
Content-Type: text/html
Connection: Close

A second request through the cache server, using
another browser on the same client configured to use
the cache server, indicates that this client retrieved
the file from the cache server, not from the origin
server. The Date field in the server response is the
same as the initial request and the protocol has once
again been swapped from HTTP/1.1 to HTTP/1.0.

The third example shows that the object is now not
only available to different browsers on the same
machine, but now that it is available to different
machines on the same network, using the same
cache server. By requesting the same content from
another client machine on the same network, it is
clear that the object is served to the client by the
cache server, as the Date field set to the same value
observed in the previous two examples.

Why should data be cached?

Many Web pages that are downloaded by Web
browsers today are marked as being non-cacheable.
The theory behind this is that there is so much
dynamic and personalized content on the Internet
today that if any of it is cached, people using the Web
may not have the freshest possible content or they
may end up receiving content that was personalized
for another client making use of the same cache
server.

The dynamic and personalized nature of the Web
today does make this a challenge, but if the design of
a Web site is examined closely, it can be seen that
these new features of the Web can work hand-in-hand
with content caching.

How does caching affect the perceived user
experience? In both the browser caching and caching
server discussions above, caching helps attack the
problem of Internet performance on three fronts. First,
caching moves content closer to the client, by placing
it on local hard-drives or in local network caches. With
data stored on or near the client, the network delay
encountered when trying to retrieve the data is
reduced or eliminated.

Secondly, caching reduces network traffic by serving
content that is fresh, as described above. Cache
servers will attempt to confirm with the origin server
that the objects stored in cache – if not explicitly
marked for expiry – are still valid and do not need to
be fully re-loaded across the Internet. In order to gain
the maximum performance benefit from object
caching, it is vital to specify explicit cache expiry dates
or periods.

The final performance benefit to properly defining
content caching configurations on an origin server is
that server load and bandwidth usage is reduced. If
the server uses carefully planned explicit caching
policies, server load can be greatly reduced,
improving the user experience.

When determining how the configuration of a Web
server can be modified to improve content
cacheability, it is important keep in mind two very
important considerations. First, the content and site
administrators must have a very granular level of
control over how the content will or won’t be cached
once it leaves their server. Secondly, within this need
to control how content is cached, ways should be
found to minimize the impact client requests have on
bandwidth and server load by allowing some content
to be cached.

Take the example of a large, popular site that is noted
for its dynamic content and rich graphics. Despite

having a great deal of dynamic content, caching can
serve a beneficial purpose without compromising the
nature of the content being served. The primary focus
of the caching evaluation should be on the rich
graphical content of the site.

If the images of this site all have unique names that
are not shared by any other object on the site, or the
images all reside in the same directory tree, then this
content can be marked differently within the server
configuration, allowing it to be cached.14 A policy that
allows these objects to be cached for 60, 120 or 180
seconds could have a large affect on reducing the
bandwidth and server strain at the modified site.
During this seemingly short period of time, many of
the requests for the same object could originate from
a large corporate network or ISP. If local cache
servers for this client-side network can handle these
requests, both the server and client sides of the
transaction could see immediate performance
improvements.

Taking a server header from an example used earlier
in the paper, it can be demonstrated how even a slight
change to the server header itself can help control the
caching properties of dynamic content.

Dynamic Content

HTTP/1.1 200 OK
Date: Tue, 13 Feb 2001 14:50:31 GMT
Server: Apache/1.3.12
Cache-Control: no-store, must-revalidate
Expires: Sat, 13 Feb 2001 14:50:31 GMT
Last-Modified: Sun, 03 Dec 2000 23:52:56 GMT
ETag: "1cbf3-dfd-3a2adcd8"
Accept-Ranges: bytes
Content-Length: 3581
Connection: close
Content-Type: text/html

Static Content

HTTP/1.1 200 OK
Date: Tue, 13 Feb 2001 14:50:31 GMT
Server: Apache/1.3.12
Cache-Control: max-age=43200, must-revalidate
Expires: Wed, 14 Feb 2001 02:50:31 GMT
Last-Modified: Sun, 03 Dec 2000 23:52:56 GMT
ETag: "1cbf3-dfd-3a2adcd8"
Accept-Ranges: bytes
Content-Length: 3581
Connection: close
Content-Type: text/html

As can been seen above, the only difference in the
headers sent with the Dynamic Content and the Static
Content are the Cache-Control and Expires values.
The Dynamic Content example sets Cache-Control to

14 The description used here is based on the configuration options
available with the Apache/1.3.x server family, which allows caching
options to be set down to the file level. Other server applications
may vary in their methods of applying individual caching policies to
different sets of content on the same server.

no-store, must-revalidate and Expires to the same
time as the Date header. This should prevent any
cache from storing this data or serving it when a
request is received to retrieve the same content.

The Static Content modifies these two settings,
making the requested object cacheable for up to 12
hours – Cache-Control value set to 43,200 seconds
and an Expires value that is exactly 12 hours in the
future. After the period specified, the browser cache or
caching server must re-validate the content before it
can be served in response to local requests.

The must-revalidate item is not necessary, but it
does add additional control over content. Some cache
servers will attempt to serve content that is stale
under certain circumstances, such as if the origin
server for the content cannot be reached. The must-
revalidate setting forces the cache server to re-
validate the stale content, and return an error if it
cannot be retrieved.

Differentiating caching policies based on the type of
content served allows a very granular level of control
over what is not cached, what is cached, and for how
long the content can be cached for and still be
considered fresh. In this way, server and Web
administrators can improve site performance a little or
no additional development or capital cost.

It is very important to note that defining specific
server-side caching policies will only have a beneficial
affect on server performance if explicit object caching
configurations are used. The two main types of explicit
caching configurations are those set by the “Expires”
header and the “Cache-Control” family of headers –
as seen in the example above. If no explicit value is
set for object expiry, performance gains that might
have been achieved are eliminated by a flood of
unnecessary client and cache server requests to re-
validate unchanged objects with the origin server.

Conclusion

Despite the growth of dynamic and personalized
content on the Web, there is still a great deal of highly
cacheable material that is served to clients. However,
many sites do not take advantage of the performance
gains that can be achieved by isolating the dynamic
and personalized content of their site from the
relatively static content that is served alongside it.

Using the inherent ability to set explicit caching
policies within most modern Web-server applications,
objects handled by a Web-sever can be separated
into unique content groups. With distinct caching
policies for each defined group of Web objects, the
Web-site administrator, not the cache administrator,
has control over how long content is served without

re-validation or re-loading. This granular control of
explicit content caching policies can allow Web-sites
to achieve noticeable performance gains with no
additional outlay for hardware and software

Bibliography

Web Caching (Duane Wessels, Nathan Torkington
[editor]), O’Reilly and Associates. 2001

Web Protocols and Practice: HTTP/1.1, Networking
Protocols, Caching, and Traffic Measurement
(Balachander Krishnamurthy and Jennifer Rexford),
Addison Wesley Longman, Inc, 2001

.

Appendix A: Example of a Web request processed by a browser cache

Application and Network Side (Outbound)

GET / HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-powerpoint,
application/vnd.ms-excel, application/msword, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Sat, 19 Aug 2000 04:49:38 GMT
If-None-Match: "219cb-46d-399e11e2"
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: grabit.keynote.com
Connection: Keep-Alive

Application and Network Side (Inbound)

HTTP/1.1 304 Not Modified
Date: Thu, 15 Feb 2001 18:16:14 GMT
Server: Apache
Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "219cb-46d-399e11e2"

1. The only caching information passed back to the server when this file verified by the browser is the “If-
Modified-Since” and “If-None-Match” data. The second item is a fall-back condition using the entity tag (“Etag”)
value of the requested file, in the case that none of the other values can be verified by the server. As the entity tag
sent by the client matches the one held by the server, the 304 Not Modified message was returned by the server.

1

Appendix B: Example of a Web request processed by a cache server

Application Side (Outbound)

GET http://grabit.keynote.com/ HTTP/1.0
Accept: */*
Accept-Language: en-us
Proxy-Connection: Keep-Alive
If-Modified-Since: Sat, 19 Aug 2000 04:49:38 GMT; length=1133
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: grabit.keynote.com
Pragma: no-cache

Cache Side (Outbound)

GET / HTTP/1.0
Accept: */*
Accept-Language: en-us
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Host: grabit.keynote.com
Pragma: no-cache
X-Forwarded-For: 127.0.0.1
Via: 1.0 Proxy+ (v2.40 http://www.proxyplus.cz)
If-None-Match: "219cb-46d-399e11e2"

Cache Side (Inbound)

HTTP/1.1 304 Not Modified
Date: Thu, 15 Feb 2001 05:31:55 GMT
Server: Apache
Connection: close
ETag: "219cb-46d-399e11e2"

Application Side (Inbound)

HTTP/1.0 304 Not Modified
Date: Thu, 15 Feb 2001 05:31:55 GMT
Server: Apache
Last-Modified: Sat, 19 Aug 2000 04:49:38 GMT
ETag: "219cb-46d-399e11e2"
Content-Length: 1133
Content-Type: text/html
Connection: Close

1. “If-Modified-Since” and “Content-Length” headers are stripped by cache server on the outbound transmission

and re-inserted by cache server when the server data is passed back to the application.
2. Cache server inserts “X-Forwarded” and “Via” headers, as required by HTTP standard. This can be removed

in the server settings to make the use of a proxy server invisible to server.
3. Cache server uses “ETag” header, the unique file marker for all objects on a Web server, to ensure that the

content has not changed since last retrieval.
4. “User-Agent” string is passed intact through the cache server. This helps prevent any issues with browser-

specific content as the cache server appears to be the browser it is acting as a proxy for.
5. The “Pragma: no-cache” header appears as the process outlined above resulted from a refresh of content

initiated by the browser. This header forces the request to go directly to the origin server in order to ensure
that the content held by the cache server is still valid and not stale.

Item 5 listed above is the most important item to note here. The only reason an outbound network request to the
origin server was initiated was that a page refresh was requested by the browser application. If the browser (or
another browser application, or another machine using the same cache) initiated a request for the same object
after it had been re-loaded into the cache, no outbound network traffic seen.

This was tested using a cache server used by all browser applications being run on the same machine as the
cache server. When a second browser application requested a page that had been previously cached by another
browser application, no network traffic was generated, as the local cache server handled the delivery of the
cached content internally.

2

3

1

4
5

